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Chapter 1

Introduction

My research lies in the area of signal and image processing, digital communication, in-
formation theory, computer vision and machine learning. It tackles the question of uni-
versality in digital communication: digital communication refers to the problem of a
source sending a digital (or digitalized) data over a noisy channel (see Fig. 1.1), and uni-
versality means that neither the source statistics, nor the channel statistics are known a
priori. Another characteristic of my research is to consider the problem of communicating
visual data: image and video.

Figure 1.1: Scheme of a digital communication system as drawn in the seminal paper [87,
Fig. 1].

Terminology. Different terms are used for the same idea:

– data compression = source coding,
– protection against channel noise = channel coding,
– protection against channel disturbances = protection against noise, but also against

any other disturbances such as: multipath in wireless transmissions, or multiuser
interferences, ...

Universal communication: a separable problem into source and channel coding.
For the classical model (see Fig. 1.1) of a source with a single output and a channel with
a single input and a single output, [87] showed that separation between (i) source coding,
(where all the redundancy in the source is removed) and (ii) channel coding (where a
minimum of redundancy is added in order to remove the effect of the channel noise) is
optimal. In other words, optimizing the two problems separately and connecting the two
solutions obtained in series (as in Fig. 1.2) is optimal. Moreover, this separation principle
holds quite generally, even when the source and channel statistics are unknown [46, Th.
3.8.3, Th 3.8.4]. Based on this principle, research subjects can be dealt separately into
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FIGURE 7.15. Separate source and channel coding.

compression theorem is a consequence of the AEP, which shows that
there exists a “small” subset (of size 2nH ) of all possible source sequences
that contain most of the probability and that we can therefore represent
the source with a small probability of error using H bits per symbol.
The data transmission theorem is based on the joint AEP; it uses the
fact that for long block lengths, the output sequence of the channel is
very likely to be jointly typical with the input codeword, while any other
codeword is jointly typical with probability ≈ 2−nI . Hence, we can use
about 2nI codewords and still have negligible probability of error. The
source–channel separation theorem shows that we can design the source
code and the channel code separately and combine the results to achieve
optimal performance.

SUMMARY

Channel capacity. The logarithm of the number of distinguishable
inputs is given by

C = max
p(x)

I (X;Y).

Examples

• Binary symmetric channel: C = 1 − H(p).

• Binary erasure channel: C = 1 − α.

• Symmetric channel: C = log |Y| − H(row of transition matrix).

Properties of C

1. 0 ≤ C ≤ min{log |X|, log |Y|}.
2. I (X;Y) is a continuous concave function of p(x).

Joint typicality. The set A(n)
ε of jointly typical sequences {(xn, yn)}

with respect to the distribution p(x, y) is given by

A(n)
ε = {

(xn, yn) ∈ Xn × Yn : (7.151)∣∣∣∣−1

n
log p(xn) − H(X)

∣∣∣∣ < ε, (7.152)

Figure 1.2: Separate source and channel encoding is optimal [26, Fig. 7.15].

source coding and channel coding.

Challenges for the universal compression of visual data. The question of universal
data compression has been dealt with statistics and information theory. It was shown that,
when the source probability distribution is unknown, the data can still be compressed.
Moreover, the compression rate is the same with or without the probability distribution
knowledge, when the length of the data tends to infinity. This is the case, in particular,
with the Lempel-Ziv codes [108, 109]. At finite length, however, universality has a cost
of the order of O(log(n)/n) [27, Th. 7.5], where n is the length of the data sequence to
be processed. This is a positive result as this cost is small, and vanishes as the length n
tends to infinity. However, this extra amount O(log(n)/n) of data to be transmitted due to
universality holds only for very restricted classes of probability distributions. In particular,
there exists no universal code for the class of stationary ergodic processes [89]. Instead,
for certain subclasses, such as the identically and independently distributed (i.i.d.), or
the order k Markov processes, this cost is O(log(n)/n), where the multiplicative scaling
factor depends on the number of parameters needed to identify a distribution within the
class [27, Th. 7.5]. This is a negative result for visual data, which are notoriously neither
stationary nor ergodic.

Therefore the challenges in compressing visual data are to efficiently (i) model the
visual data, (ii) code the model, and (iii) code the data according to the model.
These problems will be discussed in Chap. 2.

Challenges for the universal transmission of data. If universality does not incur
any loss in data compression (at least asymptotically), this is not the case for the trans-
mission over noisy channels. Indeed, when the channel statistics are not known, the best
performance is determined by the worst channel [46, Th. 3.2.1]. To compensate for this
negative result, a feedback channel, if possible, is used to inform the encoder of the channel
statistics. This method consists in (for the more complex case of multipath channels)
(i) sending a learning sequence known by both the encoder and decoder, (ii) estimating
of the channel characteristics (noise level, channel impulse response) at the receiver, and
finally (iii) sending information about the channel from the receiver to the encoder through
a feedback channel. However, with the advent of turbo-codes [6], this approach had to
be revisited. Indeed, turbo-codes were the first practical codes to operate at the optimal
level predicted by C. Shannon in [87]. In other words, they were able to operate at a much
higher noise level than all its predecessors, such that the whole communication chain, in
particular the channel estimation, had to operate at a higher noise level to benefit from
the decoding performance of turbo-codes.

Therefore, the challenges for the universal transmission of data are to efficiently
(i) estimate the channel even for high noise level and (ii) dimension the system. These
problems will be discussed in Chap. 3.

Challenges for the universal transmission of visual data, when the separation
principle does not hold. The separation principle holds if the system is unconstrained
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in terms of complexity (source and channel code are indeed optimal), or delay (adding the
necessary amount of redundancy to combat the channel noise is possible) [29, Sec. 2.2].
For constrained systems, joint source channel coding/decoding must be applied instead.
This problems will be discussed in Sec. 3.2.

Notations:
– Upper case letters X,Y, . . . refer to random variable, random process or a source,
– Calligraphic letters X ,Y, . . . refer to alphabet, the subset of R in which the random

variable takes its values
– |A| is the cardinality of the set A
– Xj

i = (Xi, Xi+1, . . . , Xj) is a (j-i+1)-sequence of random variables or a random
vector
Xn = (X1, X2, . . . , Xn), the index in the above notation is dropped when i = 1,

– Lower case x, y, . . . and xn, yn, . . . mean realization of a random variable, or realiza-
tion of a random vector.

– A∗ is the set of finite strings over the alphabet A.
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Chapter 2

Compression and universality

Universal compression, or universal source coding, is the problem of compressing a data
source without knowledge of the source probability distribution. This occurs in particular
when images and videos have to be compressed. A natural question to ask is whether
universality has a cost compared to the case where the statistics are known. A second
question is whether practical codes exist, which achieve the optimal performance of uni-
versal source coding. Surprisingly, the latter question is rarely covered in references on
source coding for image and video. This text offers a review of these ideas. The presen-
tation does not follow a historical order. It is rather focused on the application to image
and video, by first presenting the theory of universal source coding and then describing
practical implementations used in video coding. This review constitutes a contribution
per se.

This chapter is organized as follows. First, Section 2.1 reviews the problem of lossless
data compression under the condition that the probability distribution is perfectly known.
Section 2.2 reviews that, in universal lossless data compression, there is an excess rate (in
bits per source symbol), which vanishes as the sequence length goes to infinity. This excess
rate is of the order of O(log(n)/n) for a large variety class of stationary ergodic sources,
where n is the source input length. Then, two practical implementations are presented
which achieve the same excess rate. Section 2.4 presents fundamental principles for image
and video coding. Finally, Section 2.5 introduces my contributions, which are detailed in
Sections 2.6 to 2.9. For easier reading, each main result is first summarized in a sentence
in bold, and then further developed.

2.1 Lossless data compression

Let us consider a source X on the discrete alphabet X . This source generates a random
process, which is defined as a sequence of random variables (Xn)n≥0 with probability
distribution P . Let Pn be the marginal distribution on X n of the distribution P . Now,
a source sequence is encoded with a code Cn defined by an encoding function fn and a
decoding function gn. In this section, the probability distribution P is known at both the
encoder and the decoder such that the code mappings fn, gn depend inherently on P .

Different types of codes Cn exist to compress the input data sequence xn. It can be
with fixed (FL) or variable length (VL), and without error for all lengthsn (zero error) or
only asymptotically (see Table 2.1 for the definitions of the properties of the code).

For a FL code, the encoding function assigns to each source sequence of length n, xn,
a fixed-length codeword. In other words, given the source sequence length, all codewords
have the same length, such that each codeword can be seen as an index taken from an set.

9
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Property Definition

FL fixed length the length of the coded sequence is the same for all input sequences

VL variable length the length of the coded sequence depends on the input sequence

zero error ∀n∀xn, gn(fn(xn)) = xn

asymptotically the probability of error Pne tends to zero
error free as the input sequence length n→∞

Table 2.1: Properties of lossless source codes

The compression rate R ∈ R+ is the ratio between the codeword length in bits and the
source sequence length, and is therefore expressed in bits per source symbol :

R =
number of bits to represent a codeword

n
bits per source symbol. (2.1)

The encoding and decoding functions depend explicitly on the compression rate and are
fn : X n → {1, . . . , 2nR}, gn : {1, . . . , 2nR} → X n, respectively. For ease of presentation,
we assume that the entries of the codewords are bits. Generalization to larger alphabets
requires a scaling factor to take into account the codeword alphabet size.

For a VL code, the encoding and decoding functions are fn : X n → {0, 1}∗ and
gn : {0, 1}∗ → X n. Indeed, the encoding function assigns to each source sequence xn, a
codeword, whose length depends on the sequence xn. The compression rate is defined as
the ratio between the average length of the codewords and the input sequence length:

R =
logEXn [`(fn(Xn))]

n
bits per source symbol (2.2)

where `(.) stands for the function giving the binary length of the codeword.
Finally, for both FL and VL codes, the probability of error denoted Pne depends on the

input length n, and is the probability that the decoded sequence differs from the input
sequence:

Pne = P (gn(fn(Xn)) 6= Xn) . (2.3)

The goal of lossless source coding is to find the lowest compression rate R such that
the probability of decoding error decays asymptotically to zero with the input length n,
or even such that there is no error (fn(gn(.)) is the identity).

Figure 2.1: Source coding scheme.

In the class of stationary ergodic sources defined on a discrete alphabet, the
optimal compression rate for lossless encoding while knowing the probability
distribution, is the entropy rate. This holds for FL and VL codes. If the source X
is stationary and ergodic, defined on a discrete alphabet X , with probability distribution P
known at both encoder and decoder, then the optimal compression rate for FL codes [46,
Th 1.3.1, Ex. 1.3.2] and VL codes [46, Th 1.7.1, Rk. 1.7.3.] are both equal to:

H(P ) = lim
n→∞

1

n
H(Xn) = lim

n→∞

1

n
H(Xn|Xn−1) bits per source symbol, (2.4)

with H(Xn) = −
∑

Xn∈Xn

Pn(Xn) log2 Pn(Xn). (2.5)
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H(Xn) is called the entropy of the random vector Xn with joint distribution Pn and H(P )
is the entropy rate. The second equality in (2.4) follows because the source is stationary.
Optimality here means that not only there exists a code that achieves this rate, but also
that there is no code that can achieve a smaller rate.

For instance, in the special case of a an i.i.d. source, the compression rate in (2.4)
reduces to the entropy of the source

H(X) = −
∑

x∈X
P (x) log2 P (x) bits per source symbol, (2.6)

and can be achieved by either:
– a FL code [42, Th. 3.4. p 55], where each typical sequence is assigned a distinct

codeword, and all non-typical sequences are assigned the same codeword,
– a VL [26, Th. 3.2.1], where the typical sequences are encoded with nH(Xn) bits, the

non typical sequences with length n log2 |X | bits, and a flag bit is used to indicate if
the sequence is typical or not,

– a VL code, where more probable symbols (or input sequences) are encoded with
shorter codewords (like Huffman, Shannon [26, Sec 5.4.- 5.8] or Arithmetic code [26,
Sec 13.3.]).

These optimal VL codes are zero error, whereas the optimal FL code is only asymptotically
error free.

2.2 Universal source coding and its theoretical cost

This section tackles the more realistic and interesting setup, where the distribution of the
source is known neither at the encoder nor at the decoder. This problem is referred to
as universal source coding. The goal of the section is to review the optimal compression
rate that can be achieved for universal source coding, and compare it to the case where
the probability distribution is known. If the probability distribution is available at both
encoder and decoder, the code will be called distribution-aware code, or aware code. Simi-
larly, when the distribution is neither available at the encoder nor at the decoder, we will
call the code a distribution-unaware code, or an unaware code. In this context, a distribu-
tion unaware code is said to be universal if it achieves the same asymptotic compression
rate as a distribution aware code.

The discussion concerns stationary ergodic sources as in the previous section, where
the probability distribution of the source is known (see Sec. 2.1). However, two restrictions
to this distribution ensemble will be made. First, the alphabet is not only discrete as in
the previous section, but it even needs to be finite. Indeed, the necessary and sufficient
condition [51] for approaching a distribution, and therefore for the existence of a universal
code, is not satisfied for discrete distributions even with finite entropy [43, Th. 3.2.1].
Second, the class of distributions can not be too large. Indeed, there exists no universal
code for the class of stationary ergodic processes [89] or for the class of Markov processes
of an unknown finite order [88].

Formally, let X be a source on the finite alphabet X with stationary ergodic distribu-
tion P . Let Pn be the marginal distribution on X n of the distribution P . In the following,
we will consider subclasses P of the class of stationary ergodic distributions. In the context
of universal coding, it is clearer to write the entropy (2.6) of a source as a function of the
distribution:

H(P ) = −
∑

x∈X
P (x) log2 P (x) (2.7)
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FL unaware codes of memoryless sources with finite alphabet experience an
excess compression rate, compared to distribution aware codes. Therefore,
universal coding focuses on VL codes. Consider a memoryless source with distribu-
tion P ∈ P. Here, P is the subclass of i.i.d. sources. Further assume that the set Q ⊆ P
to which P belongs, is known. With a FL code, the optimal compression rate is the worst
(highest) compression rate supQ∈QH(Q) [26, Th. 11.3.1] [46, Th. 1.3.1]. This leads to an
excess rate with respect to optimal distribution aware coding:

Excess Rate = sup
Q∈Q

H(Q)−H(P ) bits per source symbol. (2.8)

As was seen above, even for the simple case of i.i.d. sources, there exists no FL universal
codes. Therefore, universal coding focuses on VL codes.

At this stage of the development, it is important to be precise about the notion of
distribution knowledge. The statement [26, Th. 11.3.1] [46, Th. 1.3.1] is given a different
interpretation in [47, Th. 3.21] from the one formulated above. More precisely, [47, Th.
3.21] concludes the existence of FL universal codes. This is due to the fact that in the
latter Theorem, it is assumed that the probability distribution is not known but that its
entropy is known, which allows to determine the compression rate. Then, since the coding
scheme is FL and does not depend on the probability distribution but on its rate only, it
is concluded that there exists universal FL code. Here instead, it is assumed that when
the distribution is not known, neither the distribution nor any statistics are known. In
particular, the entropy of the true distribution is not known.

Optimizing a VL code is equivalent to optimizing a probability distribution for
decoding. VL coding can lead to ambiguity while decoding a sequence of codewords,
since the parsing may not be unique. Since the goal is lossless compression, only injective
encoding functions are considered, which are referred to as uniquely decodable VL codes.
Then, [26, Th. 5.5.1.] states that there is a one-to-one correspondence between a uniquely
decodable VL code with codeword set C and the set of codeword lengths {`(c), c ∈ C}
satisfying the Kraft inequality

∑

c∈C
2−`(c) ≤ 1. (2.9)

Formally,
– For any uniquely decodable code C, the set of codeword lengths satisfies (2.9)
– Conversely, if the mapping ` : C → N satisfies (2.9), then there exists a uniquely

decodable code with length mapping ` : C → N.
Moreover, this length mapping defines a probability distribution. Indeed,

– if the mapping ` : C → N satisfies (2.9), then Q(c) = 2−`(c) is a quasi-probability
distribution since

∑
c∈C Q(c) =

∑
c∈C 2−`(c) ≤ 1. One only needs to add a codeword

s.t.
∑

cQ(c) = 1 on the extended set to build a probability distribution.
– Conversely, if Q is a probability distribution on C, then `(c) = d− log2(Q(c)e is a

length mapping that satisfies (2.9), since
∑

c∈C 2−`(c) ≤∑c∈C Q(c) = 1.
Therefore, there is a one-to-one correspondence between probability distributions and
uniquely decodable codes. Optimizing a code is thus equivalent to finding the best prob-
ability distribution for decoding.

There exists a practically implementable VL code, called arithmetic code, that
is optimal. Indeed this code belongs to the the set of prefix codes, a subset
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of uniquely decodable codes, but still achieves the same compression gain as
uniquely decodable codes. Moreover, it is a practical scheme as it allows to
encode a sequence sequentially and use a distribution learned on the fly. A
prefix code is such that no codeword is a prefix of any other codeword. Consequently, the
code allows instantaneous or more precisely sequential decoding, and the set of prefix codes
is a subset of the uniquely decodable code set. Interestingly, prefix codes and uniquely
decodable codes achieve the same optimum compression gains. Indeed, prefix codes and
uniquely decodable codes satisfy the Kraft inequality [26, Th. 5.2.1, Th. 5.5.1]. So,
without loss of optimality, we can consider prefix codes.

One possible prefix code is the arithmetic code [26, Sec. 13.3] that encodes a sequence
using fixed-precision arithmetic. This method is appreciated for its complexity that is
linear in the length of the sequence, but also because it allows to encode sequentially and
use a source distribution that is learned on the fly. Therefore arithmetic coding is naturally
used in universal compression.

Criteria for optimal VL universal code. To evaluate the quality of a code built from
an arbitrary distribution Qn, we compute the difference between the codeword lengths
obtained with the encoding distribution Qn, and the optimal code (built from the true
distribution Pn). This leads to the loss:

L(xn) = − logQn(xn) + logPn(xn) bits per source sequence of length n. (2.10)

This loss (2.10) is expressed in bits per source sequence of length n, as it computes the
number of additional bits needed to compress a whole sequence of length n. From this
loss function (2.10), different criteria can be derived to optimize the code distribution Qn.
Indeed, we can either optimize for the worst input sequence (regret) or for a criterion
averaged over all input sequences (redundancy). Loss, regret and redundancy are the
terms used in statistics. [27, Sec. 6.1] uses a different terminology. The Loss is called
Pointwise redundancy, the Redundancy is called Expected redundancy, whereas the regret
is called the Maximum redundancy.

– The universal code optimal according to the Minimax regret (worst case
over the sequence and over the distribution) is given by the Normalized
Maximum Likelihood (NML) distribution.
First, the loss is computed for the worst input sequence, which is called the regret
(see Table 2.2). Then, this regret is evaluated for the worst distribution of the
class. The reason for computing this Maximum regret is that it allows to analyze
uniform convergence over the distribution class P. Finally, the code distribution that
minimizes the Maximum regret, is called the optimal distribution for the Minimax
regret, which is defined in Table 2.2.

Criterion Definition

Regret R∗(Qn|Pn) = max
xn

log
Pn(xn)

Qn(xn)

Maximum regret R∗(Qn|P) = sup
P∈P

max
xn

log
Pn(xn)

Qn(xn)

Minimax regret R∗(P) = inf
Qn

sup
P∈P

max
xn

log
Pn(xn)

Qn(xn)

Table 2.2: Definition of the Minimax regret
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For any class of distributions P over a finite alphabet X , the minimum is attained
[27, Th. 6.2] when Qn is the normalized maximum likelihood distribution (NMLn):

arg inf
Qn

sup
P∈P

max
xn

log
Pn(xn)

Qn(xn)
= QNML

n : zn 7→ supP∈P Pn(zn)∑
yn supP∈P Pn(yn)

(2.11)

So, in practice, given a set of distributions P, the optimal code that achieves Minimax
regret (uniformly over the class P) can be computed by:

1. for each input sequence zn, compute the length of the coded sequence− logQNML
n (zn)

2. find the codewords as in [26, Th. 5.5.1.] (Kraft inequality)

– The universal code optimal according to the Minimax redundancy (aver-
age case over the sequence and worst case over the distribution) is given
by a mixture distribution.
The regret computes the worst case loss. One can instead compute the average loss,
which is also called the redundancy. Then, as for the regret, the Minimax redun-
dancy is derived, see Table 2.3, where D(Pn||Qn) stands for the Kullback-Leibler
divergence between the probability distributions Pn and Qn.

Criterion Definition

Redundancy R̄(Qn|Pn) = EXn∼Pn log
Pn(Xn)

Qn(Xn)
= D(Pn||Qn)

Maximum Redundancy R̄(Qn|P) = sup
P∈P

D(Pn||Qn)

Minimax Redundancy R̄(P) = inf
Qn

sup
P∈P

D(Pn||Qn)

Table 2.3: Definition of the Minimax redundancy.

The Maximin theorem allows to compute the optimal distribution [27, Sec 7.2]. If
the set of probability distribution is equipped with a probability measure µ, the inf
and sup can be exchanged (second equality in (2.12)). Then, the infimum is attained
for the mixing measure (2.14). This estimate is analog to the Bayesian method in
statistics. Finally, the optimal coefficients µ̃ for the mixture are obtained by solving
the supremum (2.13).

R̄(P) = inf
Qn

sup
P∈P

D(Pn||Qn) = sup
µ

inf
Qn

∫

P
D(Pn||Qn)dµ(Pn) (2.12)

= sup
µ
D(Pn||Q∗n(µ)) = D(Pn||Q∗n(µ̃)) (2.13)

where

Q∗n(µ) =

∫

P
Pndµ(Pn) (2.14)

When the class of distributions is parametrized by a parameter θ, the optimal mixing
measure µ̃ in (2.13) is the input distribution achieving the capacity of a channel with
input θ and output xn, the sequence to be compressed [26, Th 13.1.1] [27, Sec. 7.2].

For a large variety of stationary ergodic processes, Minimax regret and min-
imax redundancy grow as # of parameters

2 log n. Therefore, for these classes, VL
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universal coding does not incur any asymptotic loss with respect to distribu-
tion aware coding. In this paragraph, a function which is asymptotic equivalent to the
minimax regret and to the minimax redundancy is reviewed. To do so, we can first notice
that minimax redundancy R̄n(P) and regret R∗n(P) satisfy ∀n, ∀P

R̄n(P) ≤ R∗n(P) (2.15)

which follows from the definition of the redundancy (average case), and of the regret (worst
case). Then, the strategy will be to derive a lower bound for the minimax redundancy, and
then an upper bound for the regret, by mean of a specific code construction. However, to
do so, we need to restrict to a subclass of probability distributions P within the class of
stationary ergodic processes, since the redundancy does not exist [89] for the whole class
of stationary ergodic sources.

A lower bound for minimax redundancy. For the parametric class of processes
P = {Pθ, θ ∈ Θ ⊆ Rk} [27, Th. 7.4], the minimax redundancy is bounded below by

k

2
log n−K ≤ R̄n(P) (2.16)

where K is a constant, provided there exists an estimator θ̂n : X n → Θ, whose error is
upperbounded by O(1/n). In other words, provided that the class of distribution P is
learnable, a lower bound of the minimax redundancy scales as # of parameter

2 log n. This
result can be instantiated for many subclasses, such as those in Table 2.4: i.i.d., Markov and
compound process [47, Sec. 3.1.9.]. Given a family of memoryless probability distributions
P = {P (.|s), s ∈ S} defined on the alphabet X , a compound source is such that a
probability distribution is chosen and used from the beginning to the end.

An upper bound for minimax regret. The upper bound follows an achievability
argument. More precisely, the code based on the NML distribution is used, and by defini-
tion of the minimum, the minimax regret is necessarily smaller than the Maximum regret
achieved by NML. Interestingly, the resulting upper bound for minimax regret achieves
the same growth rate as (2.16). Therefore, the minimax regret and redundancy are asymp-
totically equivalent and satisfy [27, Th. 7.5.]

r(n)−K1 ≤ R̄n(P) ≤ R∗n(P) ≤ r(n) +K2 (2.17)

where the function r(n) and the constants K1,K2 depend on the class of distributions
considered P, see Table 2.4.

Class P Asymptotic equivalent
function r(n)

i.i.d. process [27, Th. 7.5]
|X | − 1

2
log n

mth order Markov process [27, Th. 7.5] |X |m |X | − 1

2
log n

compound process with |S| states from [27, Th. 7.4] |S| |X | − 1

2
log n

Table 2.4: Asymptotic equivalent function to the Minimax regret and Minimax redundancy
for some class of processes.
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An important consequence of this result is that, for all the classes of processes in Table
2.4, the excess rate (in bit per source symbol) vanishes asymptotically:

lim
n→∞

1

n
R̄n(P) = lim

n→∞

1

n
R∗n(P) = 0, (2.18)

and the convergence rate of the excess rate is

# of parameters

2
· log n

n
. (2.19)

So, VL universal coding does not incur any asymptotic loss with respect to distribution
aware coding.

The two-part algorithm (estimate the distribution, encode it, and encode the
data with the estimated distribution) achieves the same growth rate as the
minimax regret for a large variety of probability class P. Unfortunately, the
direct implementation of the one-part code using NML distributions, which achieves the
optimal redundancy, is impractical. Indeed, {QNML

n }n does not define a process distribu-
tion, since QNML

n is not the marginal of QNML
n+1 . So, a practical scheme based on NML must

process the sequence as a whole. More precisely, for a given input sequence length n, one
needs to (i) compute the probability distribution QNML

n , (ii) determine the length of each
input sequence (i.e. ∀xn, compute − logQNML

n (xn)), and finally (iii) find the codewords
as in [26, Th. 5.5.1.] (Kraft inequality).

Instead, the two-part algorithm (also called two stage in [27]), is the very simple and
natural way to implement universal coding [65]. It consists of:

- estimating the distribution, and encoding it.
- encoding the data sequence xn according to the estimated distribution.

The difficulty of the two-part algorithm lies in the encoding of the distribution [45, p.16,
chap. 5]. First attempts to solve this problem considered avoiding encoding the distribu-
tion, which led to the one-part universal coding scheme (2.14) and (2.11). Fortunately,
the distribution encoding problem has been solved in [4]. This allowed to show that the
two-part algorithm achieves the same growth rate as in Table 2.4 for a large variety of
distribution class [45, chap. 15]. For instance, for the class of i.i.d. processes, the optimal
distribution estimate is the type (that counts the occurrence of each symbol), and the

growth rate is |X |−12 log n [27, Example 6.1].
Historically, the two-part algorithm was proposed in [65], before the one-part algorithm

[66]. Indeed, coding in two parts seems a very natural and practical way to tackle univer-
sality. However, it leads to the difficult problem of finding a good code for the distribution.
This was the motivation for finding a one part code, that avoids to code the distribution.

Another practical and minimax optimal two-part algorithm: encode the ith
symbol based on the distribution estimated from the first i− 1 symbols. An-
other practical scheme consists in a sequential learning and encoding approach. At itera-
tion i,

– estimate the distribution based on the first i− 1 symbols of the sequence,
– encode the i-th symbol of the sequence based on the estimated distribution.

Without loss of optimality, the encoding of the sequence can be performed with a prefix
code which allows sequential encoding such as arithmetic coding (see the Paragraph on
prefix codes p. 12), such that the decoder, upon decoding of the i-th symbol has access
to the first i− 1 symbols and can reconstruct the distribution estimate. Therefore, there



2.3. UNIVERSAL SOURCE CODING IN A WIDE SET OF DISTRIBUTIONS 17

is no need to encode the distribution estimate. This represents a gain with respect to
the two-part algorithm described above. However, the encoding is suboptimal since the
distribution estimate is less accurate. On the whole, both effects compensate, and it is
shown that this sequential encoding achieve the same growth rate as the NML scheme,
[27, Th. 6.3] for i.i.d. processes, and [27, Th. 6.5, Th 6.6] for Markov processes.

2.3 Universal source coding in a wide set of distributions:
the model selection problem and the minimum descrip-
tion length principle

Universal coding over large distribution sets (for which minimax criteria don’t
exist) leads to a model selection problem. Universal coding refers to the problem
of compressing an input sequence with minimum coding length, when the distribution of
the input sequence is unknown. Section 2.2 showed that we can construct universal codes,
i.e. codes whose length has the same growth rate as a distribution-aware code, according
to a minimax criterion, i.e. with uniform convergence over the set of possible distributions.
Unfortunately optimizing with the minimax criterion can only be solved within a rather
small set of distribution. Indeed, for large classes such as the set of ergodic stationary
processes [89] or the set of Markov processes of an unknown finite order [88], quantitative
characterizations of minimax criteria do not exist. Instead, the search spaces must be
small set of distributions, (for instance the set of i.i.d processes, or the set of Markov
processes of order m, for some fixed m).

One way to deal with larger classes, is to remove the uniform convergence condition.
The goal becomes: seek a code that achieves the same asymptotic length as a distribution-
aware code, but non-uniformly i.e. with a convergence rate that depends on the distri-
bution. Such a code is said to be weakly universal, and by contrast a strongly universal
code refers to a universal code with uniform convergence over the distribution set. For
instance, the Lempel-Ziv code [108, 109] is weakly universal over the set of stationary
ergodic processes defined over a finite alphabet [43, p. 31].

There is another way to construct a universal code ranging over a wide set of distri-
butions without completely sacrificing strong universality. It consists in selecting non-
uniformly the best distribution class, while selecting uniformly the distribution within the
class. This method is referred to as the Minimum Description Length (MDL) principle
[65, 45, 5], and is one way to solve the more general model selection problem.

To formalize MDL, we review some terminology. Following [45, p. 15] [86, p. 14], a
model refers to a set of probability distributions of the same form, e.g. the “i.i.d. model”,
or the “first-order Markov model”. A model class instead refers to a family of models, e.g.
“the Markov class” (the model class of all Markov chains of each order). An hypothesis,
(also called point hypothesis in [45, p. 15]) is an instantiation of a model. It refers to
a single distribution, e.g. a Markov chain of a fixed order, with all parameter values
specified.

The idea behind MDL is that “the statistical model best fitting to the data is the one
that leads to the shortest description, taking into account that the model itself must also
be described” [27, Sec. 8.2]. This principle can be instantiated with a two part universal
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code, and the optimal model is then:

qMDL = arg min
q∈Q

L(q)︸︷︷︸
one model

+ L(Qq)︸ ︷︷ ︸
one distribution within the model︸ ︷︷ ︸

one hypothesis

+L(xn|Qq)︸ ︷︷ ︸
data

(2.20)

where L(q) bits allow to identify the model Mq within the model class,
L(Qq) bits allow to identify one distribution Qq within the model Mq,
L(xn|Qq) bits allow to encode the sequence xn using the coding distribution Qq.

The notation L refers to both coding and counting the length of the coded sequence. To
illustrate these definitions with an example, we can consider the Markov class {Mq}q∈Q,
where q stands for the order of the Markov distribution. Here, model selection is therefore
equivalent to identifying the chain order that best fits the data. To identify an hypothesis,
i.e. a distribution, first the order has to be coded with L(q) bits, and then the parameter of
the distribution with L(Qq) bits. If the chosen order is 0 (i.i.d. process), the parameters of
the distribution are the type (the histogram). Finally, the data sequence xn = (x1, ..., xn)
is compressed, with an arithmetic code [26, Sec. 13.3].

The MDL principle can also be implemented with a one part universal code [66] and
the model selection becomes:

qMDL = arg min
q∈Q

L(q)︸︷︷︸
one model

+L(xn|Mq)︸ ︷︷ ︸
data

(2.21)

where L(xn|Mq) is the codelength of the data obtained with a minimax optimal code.
However, in the following, we will rather focus on two-part universal code, as there exists
practical implementations of these two-part codes, that remain minimax optimal.

The model selection problem results from the fact that there is no redundancy
rate for large classes of processes. The question of model selection arises in many
problems where a task has to be performed, which depends on the distribution of the data,
and when this distribution is unknown. Compression, as discussed here, is an example,
but any learning task such as prediction or classification are other examples. A very
natural approach is then to first estimate the distribution or the function (for prediction,
classification), and then process the data. The estimation then poses a new question: how
many parameters in the function, or in the distribution should be chosen? The discussion
about universal compression and the construction of the one part universal code shows
that there is no need to estimate the distribution, and therefore no need to estimate the
order of the model if the set of the possible distributions is limited. In other words, it is
only because redundancy rates don’t exist for large classes of processes that indeed model
selection is a problem.

2.4 Universal compression of real data: image and video

Compressing images and videos is a universal compression problem, as the joint distribu-
tion of the pixels is not known. However, image and video compression have three more
specificities that have not been tackled in Sec. 2.2:

1. The model of the data is unknown and definitely far more complex than stationary
ergodic. For instance, the pixels are highly dependent (within an image but also
between successive images), and this dependence is not stationary.

2. The encoding and mostly decoding complexities must be low.
3. The compression is lossy.
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Efficient lossy compression can be realized with uniform scalar quantization
followed by lossless compression. This incurs a loss of only 1.53 dB or 0.255
bit/sample with respect to the optimal rate-distortion (RD) function irrespec-
tive of the distribution. Lossy coding refers to the case where the decoded vector is
only an approximation of the original source. Rate Distortion (RD) theory derives the in-
formation theoretical bounds for lossy compression. In particular, the RD function R(D)
gives, for a given maximum average distortion D, the smallest compression rate among all
possible codes. It also shows that vector quantizer achieves the optimal RD performance,
provided the vector size tends to infinity. However, complexity of vector quantization
prevents its use in practical system such as video compression algorithms.

Figure 2.2: Efficient lossy compression: Uniform scalar quantizer and VL lossless com-
pression.

A remarkable fact [44, page 2334] is that, at high rates, uniform scalar quantization
with VL coding (see the scheme in Fig. 2.2) attains performance within 1.53 dB (or 0.25
bit/sample for low distortion) of the best possible RD function. Moreover the result holds
quite generally: for any source distribution, for sources with memory, for any distortion
function (nondecreasing in the error magnitude). Last but not least, the result holds
even approximately when the rate is not too large (see Fig. 2.3), and holds exactly for
exponential densities (provided the quantization levels are placed at the centroids). Due to
these results, uniform scalar quantization with VL coding (also called entropy-constrained
scalar quantization) is extensively used in modern video coding.

Figure 2.3: RD functions for a Gaussian source. At high rates, the RD curve of the uniform
scalar quantizer with VL coding (dashed line) is 1.53 dB above the optimal RD curve (solid
line). Moreover, the highrate regime occurs for relative small values of R (R > 2).
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The complexity issue and the pixel dependence issue are tackled with a divide
and conquer approach: Transform coding, where the transform removes the
dependencies between the pixels, and the entropy coder the redundancy due
to the non-uniformity of the pixel intensity distribution. Motivated by its quasi-
optimality (within 1.53 dB), we stick to uniform scalar quantization with VL code. A
consequence is that the VL code becomes the element that needs to exploit the dependency
of the quantized samples. Indeed, not exploiting the memory incurs a loss. More precisely,
the independence bound on entropy [26, Th. 2.6.6] states, that for a random discrete vector
Xn, representing the quantized samples, the joint entropy satisfies

H(Xn) ≤ H(X1) + . . .+H(Xn) (2.22)

with equality iff the random variables X1, . . . , Xn are mutually independent. So, lower
compression rate can be achieved when the data are jointly compressed (joint entropy
(LHS)), rather than separately (sum of the individual entropies (RHS)). However, this is
a negative result with respect to the complexity. Indeed, to achieve the joint entropy as
a compression rate, one needs to store the joint probability distribution, and this stor-
age grows exponentially with the number of symbols considered. The complexity here
is mostly a storage issue, as an efficient implementation based on conditional probability
distributions and arithmetic code exists.

A positive interpretation of (2.22) exists, by exploiting the condition of equality. In-
deed, if the vector xn is transformed with an invertible mapping T : xn 7→ yn = Txn such
that the transformed coefficients are nearly independent, then

H(Xn) = H(Y n) . H(Y1) + . . .+H(Yn) (2.23)

where the first equality is the case of equality in the data processing equality [26, Ex.
2.2 and 2.4], and the second almost equality follows from the independence bound in the
joint entropy (2.22). So, applying a transform, allows to decorrelate the symbols such that
separate encoding of the symbols becomes nearly optimal.

.

.

.

.

.

.

Figure 2.4: Transform coding.

Optimal transform for compression of a Gaussian source with perfect distri-
bution knowledge is the Karhunen-Loève transform (KLT). The most popular
result related to the optimality of KLT is in approximation theory [86, Lemma 23.1 Th
23.2]. There it is shown that, among all linear transforms, KLT provides a low rank ap-
proximation with minimal expected distortion with the original vector. This version [86,
Lemma 23.1 Th 23.2] of the optimality of KLT is interesting as it shows that KLT is
not only optimal among all orthogonal transforms [52, prop 7.1], but also more generally
among all linear transforms.
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Less known is the optimality of KLT in RD theory. More precisely, among all lin-
ear transforms and at a given rate, the Karhunen-Loève transform (KLT) minimizes the
expected distortion of a Gaussian vector [52, prop 7.2]. Then, each component of the
transformed vector can be encoded separately using uniform scalar quantization and VL
code [52, prop 7.2][26, Th. 10.3.3]. The rate allocation between the components is de-
termined by the eigenvalues of the covariance matrix, and more rate is allocated to the
components corresponding to the largest eigenvalues. Optimality of KLT is shown for
Gaussian vectors because closed form expression of the RD function of Gaussian vector
exists. However, it may hold for more general processes. Indeed, in approximation the-
ory, the optimality of KLT holds irrespective of the signal distribution. Therefore, this
technique, called transform coding, is widely used in image and video coding.

Universal transform. When the distribution is not known, the covariance matrix can
be estimated from the data, and KLT is used with this estimated covariance matrix. This
is called PCA (principal component analysis). However, the estimated covariance matrix
needs to be sent, which might be very costly in the case of non stationary sources. Instead,
a preferred technique in video coding is to use an approximation of the KLT, the discrete
cosine transform (DCT), which is signal independent (no need to send any information
about the transform), and is optimal for Markov chains of order 1, with high correlation
[52, p. 389].

Predictive coding. Another divide and conquer approach is predictive coding. Ex-
ploiting the memory is not based on a linear transform, but on a linear filter. There, a
linear prediction based on past reconstructed values is removed from the samples and the
resulting prediction residual is quantized. The primary goal is to decorrelate the samples,
as in Transform coding. Another interpretation, is that the predictor reduces the variance
of the variable to be scalar quantized [44, page 2331]. Finally, both transform and pre-
dictive coding are equivalent asymptotically i.e. when the number of coefficients of the
transform and of the prediction filter both go to infinity [52, p. 403].
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Figure 1.3. Outline of the principle of predictive scalar quantization

We can immediately see that, in a real-world application of coding, this scheme is
not very realistic since the signal v(n) must also be transmitted to the decoder, but let
us wait until the end of the chapter before demonstrating how we go from a open-loop
scheme to a more realistic, but more complicated to analyze, closed-loop scheme.

If we subtract a value from the signal before encoding it and add it back after
decoding, the quantization error q(n) = y(n)− ŷ(n) and reconstruction error q̄(n) =
x(n)− x̂(n) must always be equal because:

q(n) = y(n)− ŷ(n) = x(n)− v(n)− [x̂(n)− v(n)] = q̄(n)

Hence their respective powers are identical. Since the main interest of the user of
the complete system is to have the smallest possible reconstruction error power, the
problem becomes simply the reduction of the quantization error power. If we assume
an optimized scalar quantization of y(n), we know that the quantization error power
can be expressed as:

σ2
Q = c σ2

Y 2−2b

From this, we conclude that seeking to minimize the reconstruction error power σ2
Q̄

leads us back to minimize σ2
Y from y(n).

We have a great range of choices for v(n). If we take v(n) in the form:

v(n) = −
P∑

i=1

aix(n− i)

while introducing P parameters, we speak of linear prediction of order P . The signal
y(n) is the prediction error which is expressed as:

y(n) = x(n) − v(n) = x(n) +

P∑

i=1

aix(n− i)
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20 Tools for Signal Compression

we see that a harmonic process can be quantized without distortion for whichever b
are chosen. Evidently, this is purely theoretical since it says that we need to only code
the different phases with a finite number of bits and that afterward there is no need to
transmit any information for as long as they wish! The inverse ratio of the asymptotic
value of the prediction gain is called spectral spread flatness.

1.3.5. Closed-loop predictive scalar quantization

Let us look at the diagram of the principle of predictive quantization in Figure 1.3.
In this configuration, the quantizer requires the transmission at each instant n of the
number i(n), the result of the calculation of the prediction error y(n), as well as
of another number which is associated with the prediction quantization v(n) itself.
This quantization configuration, known as open-loop quantization configuration, is not
realistic because we are not interested in multiplying the information to be encoded,
at a constant resolution. The application of a closed-loop quantization is preferred
as shown in Figure 1.4 since we can devote all the binary resources available to
quantifying the prediction error y(n). The transmission of v(n) to the receiver is no
longer necessary since v(n) now represents the prediction of the reconstructed signal
x̂(n). This prediction can be produced in an identical manner at the transmitter. All
that is needed at the transmitter is a copy of the signal processing carried out at the
receiver. We can speak of local decoding (at the transmitter) and of distance decoding
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Figure 1.4. Closed-loop predictive quantizer
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we see that a harmonic process can be quantized without distortion for whichever b
are chosen. Evidently, this is purely theoretical since it says that we need to only code
the different phases with a finite number of bits and that afterward there is no need to
transmit any information for as long as they wish! The inverse ratio of the asymptotic
value of the prediction gain is called spectral spread flatness.

1.3.5. Closed-loop predictive scalar quantization

Let us look at the diagram of the principle of predictive quantization in Figure 1.3.
In this configuration, the quantizer requires the transmission at each instant n of the
number i(n), the result of the calculation of the prediction error y(n), as well as
of another number which is associated with the prediction quantization v(n) itself.
This quantization configuration, known as open-loop quantization configuration, is not
realistic because we are not interested in multiplying the information to be encoded,
at a constant resolution. The application of a closed-loop quantization is preferred
as shown in Figure 1.4 since we can devote all the binary resources available to
quantifying the prediction error y(n). The transmission of v(n) to the receiver is no
longer necessary since v(n) now represents the prediction of the reconstructed signal
x̂(n). This prediction can be produced in an identical manner at the transmitter. All
that is needed at the transmitter is a copy of the signal processing carried out at the
receiver. We can speak of local decoding (at the transmitter) and of distance decoding
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Figure 2.5: Predictive coding explained in Figures, from [57, Fig. 1.3 and 1.4]. The
principle of predictive coding is best explained with (a). A prediction v(n) of the current
symbol x(n) is computed from the input sequence {x(n)}n, with the filter A′(z), and is
subtracted from the current symbol x(n) to yield the residue y(n). This residue is then
quantized, and this is the compressed version of x(n). This scheme is however impractical
as it requires to send the prediction v(n). To avoid sending additional data, the prediction
is computed on the quantized coefficients at the decoder (b), but this scheme is still not
satisfactory as it requires a feedback loop. Finally, the feedback loop is avoided in (c), by
duplicating the decoder at the encoder. This scheme also avoids sending any additional
data (neither feedforward nor feedback).

Figure 2.6: Overall video compression scheme.

2.5 My contributions to universal compression: introduc-
tion

Compression for images and videos requires to construct, for each part of the image where
the distribution is assumed to be stationary and ergodic, a universal code that consists of:
the identification of the model (q ∈ Q), then the identification of the distribution within
the model (Qq ∈ Mq) and finally the encoding of the sequence with this distribution as
in (2.20). Here, the word model is used in the sense in which it is usually employed in
statistics, i.e. a family of distributions. By contrast in information theory, a model refers
to a single distribution and a model class to a family of distributions [45, p. 175]. In
the following, I will use the information theoretical terminology unless otherwise specified,
because it allows to use the classical denomination “model based coding”.
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With this new terminology, the length of the description (2.20) becomes

L(q)︸︷︷︸
one class

+ L(Qq)︸ ︷︷ ︸
one distribution︸ ︷︷ ︸

one model

+L(xn|Qq)︸ ︷︷ ︸
data

= `(CQ(q)) + `(Cq(Qq))︸ ︷︷ ︸
one model

+ `(C(xn|Qq))︸ ︷︷ ︸
data

(2.24)

where CQ stands for the code of the class, Cq stands for the code of the distribution within
the class, and C for the code of the data sequence. To make it more concrete, (CQ, Cq) can,
for instance, include the identification of the predictor within a set of predefined predictors
(intra mode), the motion vectors, a flag bit to determine whether a block is inter coded
or rather intra coded. C contains all the encoding steps of the data sequence: prediction,
transform, entropy coder.

Statistics suggest to use a worst case criterion with respect to the true distribution of
the data (see Sec. 2.2). In information theory instead, a classical criterion is rather an
average criterion. For instance, in video standardization, the overall compressed length is
averaged over a set of typical videos which is determined at the beginning of the standard-
ization process. The optimization can then be written as:

min
CQ,Cq ,C

∑

P∈P
EXn


min
q∈Q

`(CQ(q)) + `(Cq(Qq))︸ ︷︷ ︸
one model

+ `(C(Xn|Qq))︸ ︷︷ ︸
data


 (2.25)

There are many difficulties in solving this optimization problem. The first open issue
is the optimal code C for the data sequence under complexity constraint. In fact, when
there is no complexity constraint, the optimal code C for the data sequence is well known:
it is an entropy coder, which exploits both redundancies due to the distribution and the
memory. If the complexity must be low, then a divide and conquer approach is applied
(see Sec. 2.4). There, the redundancy due to the memory is exploited by a transform,
and/or a predictor. However, the memory is not optimally exploited as the images are not
Gaussian distributed and the conditions for the optimality of the KLT are not satisfied.
In other words, after the transform, the data are decorrelated but not independent. So to
compensate for the suboptimality of the divide and conquer approach, the entropy coder
takes into account remaining dependencies, but in a limited way as only local dependencies
are exploited in the context based arithmetic coder Cabac [55].

The second difficulty is to find a good code (CQ, Cq) for the model [45, p 17]. This
difficulty was indeed a motivation for the work on the one part code [66], which avoids
the encoding of the model. Another difficulty related to the code (CQ, Cq) for the model,
is that it requires to determine the set of possible models Q. Hence the challenges in
compressing visual data are to efficiently:

(i) determine a model class Q relevant for visual data,
(ii) code the model (CQ, Cq), and
(iii) code the data according to the model C.

My contributions were to propose processing tools adapted to the images by trading be-
tween the description lengths of the model and the data. Extreme cases were developed,
where either all the description was devoted to the model only, or to the data only. More-
over, I developed user-centric video compression schemes where the characteristics of the
user are taken into accounts. These characteristics can be additional limitations, such as
low complexity at the decoder side (distributed video coding), or, rather new functional-
ities offered to the user such as free navigation within a multiview scene (free viewpoint
television).
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2.6 Coding without sending the model:
a fixed transform learned on the data

Publications related to this topic:

[30] T. Dumas, A. Roumy, and C. Guillemot, Shallow sparse Autoencoders versus sparse coding
algorithms for image compression, in IEEE International Conference on Multimedia and
Expo (ICME), 2016.

[31] T. Dumas, A. Roumy, and C. Guillemot, Image compression with stochastic Winner-Take-
All Autoencoder, in ICASSP (IEEE International Conference on Acoustics, Speech, and
Signal Processing), 2017.

[32] T. Dumas, A. Roumy, and C. Guillemot, Autoencoder based Image compression: can the
learning be quantization independent? in ICASSP (IEEE International Conference on Acous-
tics, Speech, and Signal Processing), 2018.

The model of an image requires a long description, because the model is complex, but
also because it changes rapidly, such that sending the model is very costly. Therefore,
fixed transforms are used in order to avoid sending the model. For instance, Jpeg image
compression uses DCT, and Jpeg 2000 wavelets. The drawback of these transforms is
that they are optimal for very restricted distribution families: DCT is optimal in the RD
sense for Gaussian Markov processes of order 1 with high correlation [52, p. 389 et Prop
7.2], and wavelets for sparse Markov processes of order 1 [58]. However, pixels do not
satisfy these optimality conditions. So, additional transforms have been proposed to fur-
ther decorrelate the transform coefficients, by exploiting the distribution of the transform
coefficients. For instance, the coding schemes [72, 71] are nonlinear wavelet transforms
based on the Generalized lifting scheme [91]. To avoid sending the model, the parameters
of the filter are learned for a class [73] (in that case, the coding scheme is specific to a type
of images such as remote sensing images), or derived from the context [70]. In all these
schemes, the filters are designed such as to reduce the encoding rate (more precisely the
energy of the coefficients), but not in a RD sense.

We therefore proposed to learn a transform with a deep neural network (Deep NN)
architecture on a large image dataset, where the transform is learned in order to optimize
a RD criterion. Moreover, the characteristics of the uniform scalar quantizer are explicitly
used in the learning. The learning is performed offline, and the optimized transform is
stored at both the encoder and the decoder. One drawback of learned NNs is that they are
very much dedicated to a task. For instance, previous constructions of NN based transform
were tuned for one RD tradeoff. Therefore, we also constructed a unique transform for
the whole range of distortions.

A first remarkable fact regarding the RD performance of our NN based transform
coding scheme (see Fig. 2.7), is that the learned transform outperforms Jpeg2000. Indeed,
Fig. 2.7 shows the RD performance of a compression scheme based on different learned
transforms (yellow, green, and red curves), that all outperform Jpeg2000 (black curve).
The learned transform coding still cannot bridge the gap with predictive coding (intra
coding of H265), except at very low bitrate, but in Intra coding the compression not only
relies on a transform but also on prediction, which is known to outperform the transform
coding scheme. A second remarkable fact is that both Jpeg2000 and H265 use context-
based entropy coders, where the context allows to take into account some memory in the
data at the VL encoder input. In our approach instead, a very simple symbolwise
entropy coder is used.
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Fig. 5: Rate-distortion curves averaged over the 24 luminance
images from the Kodak suite.

Alternatively, the information the jth feature map of Y
encodes, j ∈ [|1,m|], can be seen as follows. ∀i ∈ [|1,m|],
all the coefficients in the ith feature map of Y are set to µi.
This way, the feature maps of Y contains no significant infor-
mation. Then, a single coefficient in the jth feature map of Y
is set to α ∈ R and X̂ = gd (Q (Y) ;φ) is displayed. α is
selected such that it is near one of the two tails of the Laplace
distribution of the jth feature map of Y. Figure 4 shows the
64 × 64 crop at the top-left of X̂ when the single coefficient
is located at the top-left corner of the jth feature map of Y,
j ∈ {50, 125}. We see that the 50th feature map of Y encodes
a spatially localized image feature whereas its 250th feature
map encodes a spatially extended image feature. Moreover,
the image feature is turned into its symmetrical feature, with
respect to the mean pixel intensity, by moving α from the
right tail of the Laplace distribution of the jth feature map of
Y to the left tail. This linear behaviour is observed for each
feature map of Y.

It is interesting to see that, given the fitting in Section 3.1,
Y is similar to the DCT coefficients for blocks of prediction
error samples in H.265 [9] in terms of distribution. However,
when looking at the information each feature map of Y en-
codes, Y has nothing to do with these DCT coefficients.

4. EXPERIMENTS

We now evaluate in terms of rate-distortion performances:
(i) whether the way of learning the quantization matters, (ii)
whether, at test time, it is efficient to quantize the coefficients
obtained with the learned transform using quantization step
sizes which differ from those in the training stage. This is
done by comparing three cases.

The 1st case follows the approach in [6]. One transform
is learned per rate-distortion point, the bit allocation being
learned via the normalizations. In details, an autoencoder
is trained for each γ ∈ S = {10000.0, 12000.0, 16000.0,
24000.0, 40000.0, 72000.0, 96000.0}. During the training
and at test time, the quantization step size is fixed to 1.0.

In the 2nd case, a unique transform is learned, the bit al-
location being done by learning a quantization step size per
feature map. More precisely, a single autoencoder is trained
for γ = 10000.0 and {δi}i=1...m is learned, see Section 2.
At test time, the rate varies as the quantization step sizes
are equal to the learned quantization step sizes multiplied by
β ∈ B = {1.0, 1.25, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0}.

In the 3rd case, a unique transform is learned, the bit al-
location being learned via the normalizations. In details, a
single autoencoder is trained for γ = 10000.0 and, during the
training, the quantization step size is 1.0. At test time, the rate
varies as the quantization step size spans B.

In the 2nd case, the autoencoder has the architecture de-
scribed at the beginning of Section 3. In the 1st and 3rd case, a
GDN is also placed after ge and a IGDN is placed before gd.
The autoencoders are trained on 24000 luminance images of
size 256×256 that are extracted from ImageNet. Then, at test
time, the 24 luminance images from the Kodak suite are in-
serted into the autoencoders. The rate is estimated via the em-
pirical entropy of the quantized coefficients, assuming that the
quantized coefficients are i.i.d. Note that, for the 2nd and the
3rd case, we have also implemented a binarizer and a binary
arithmetic coder to compress the quantized coefficients loss-
lessly, see the code1. The difference between the estimated
rate and the exact rate via the lossless coding is always smaller
than 0.04 bbp. Figure 5 shows the rate-distortion curves aver-
aged over the 24 luminance images. The JPEG2000 curve is
obtained using ImageMagick. The H.265 [22] curve is com-
puted via the version HM-16.15. There is hardly any differ-
ence between the 2nd and the 3rd case. This means that the ex-
plicit learning of the transform and the quantization step sizes
is equivalent to learning the transform and the normalizations
while the quantization step size is imposed. Note that, in the
2nd case, the learning of {δi}i=1...m involves 128 parameters
whereas, in the 3rd case, that of {ϕe,ϕd} involves 33024 pa-
rameters. The 2nd and the 3rd case perform as well as the 1st

case. The minimization (4) and the training in [6] provide
learned transforms which can be used with various quantiza-
tion step sizes at test time. It is convenient not to train one
autoencoder per compression rate as a single training takes
4 days on a NVIDIA GTX 1080. Finally, we see that the
learned transforms yield better rate-distortion performances
than JPEG2000. The quality of image reconstruction for the
experiment in Figure 5 and another experiment on luminance
images created from the BSDS300 [23] can be seen online1.

5. CONCLUSION

Using a unique transform learned via autoencoders and var-
ious quantization step sizes at test time, it is possible to
compress as well as when learning one transform per rate-
distortion point at a given quantization step size. Moreover,
the learned transformed outperform other image compression
algorithms based on transforms.

Figure 2.7: RD performance of Transform coding, with a deep transform learned with a
RD criterion on a dataset of images [32, Fig. 5]. Performance averaged over 24 images.

In conclusion, motivated by the fact that models of images are complex and change
very rapidly, we developed a strategy based on a fixed transform to avoid sending
the model, which may require a long description due to both its complexity and its
dynamic. Unlike previous standards, the transform is not longer optimized for a class
of theoretical distributions for which optimality results can be derived. Instead, the
transform is learned, to get closer to the true model of images. Also a deep architecture
is used for its approximation power. Finally, the fixed deep transform, which
we designed, and which does not require to send any information about the model,
outperforms classical transform such as DCT and Wavelets, even if a very simple
symbolwise entropy coder is used (whereas both Jpeg and Jpeg2000 use context based
entropy coders).

2.7 Coding by sending the model only:
super-resolution based video coding

Publications related to this topic:
[8] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, Low-Complexity Single-

Image Super-Resolution based on Nonnegative Neighbor Embedding,” in BMVC (British
Machine Vision Conference), 2012.

[9] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, Neighbor embedding based
single-image super-resolution using Semi-Nonnegative Matrix Factorization,” in ICASSP (
IEEE International Conference on Acoustics, Speech, and Signal Processing), 2012.

[10] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, Compact and coherent dic-
tionary construction for example-based superresolution,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), May 2013.

[11] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, K-WEB: Nonnegative
dictionary learning for sparse image representations,” in IEEE International Conference on
Image Processing (ICIP), Sep. 2013.

[12] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, Super-resolution using
Neighbor Embedding of Back-projection residuals,” in 18th International Conference on
Digital Signal Processing (DSP), Jul. 2013.

[14] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, Single-image super-
resolution via linear mapping of interpolated selfexamples,” IEEE Transactions on Image
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Processing, vol. 23, pp. 5334–5347, Dec. 2014.
Major publication:
[13] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, “Video super-

resolution via sparse combinations of key-frame patches in a compression con-
text,” in 30th Picture Coding Symposium (PCS), Dec. 2013.

The two Previous Sections proposed schemes where the model is not send. Another
extreme consists in sending the model only. Consider a video scheme, in which the receiver
mostly receives Low Resolution (LR) images and sometimes High Resolution (HR) images,
called KeyFrames (KF) (Fig. 2.8). At the receiver, super-resolution (SR) is used to
increase the resolution, such that HR is the final rendered resolution.

Figure 2.8: Sent and received Image Sequence in the SR based video coding scheme. The
receiver extrapolates the LR frames and renders a full HR sequence.

This video compression scheme based on SR can occur in different scenarios. For
instance, it may be a choice to send compressed videos as in Fig. 2.8. Or, it results from
the network constraints. Indeed, to adapt to the variations in the network bandwidth in
video streaming, the video compression rate is lowered by reducing the spatial resolution.
To compensate for this variation in resolution, SR is used to increase the resolution when
the received resolution is low, and therefore propose a constant resolution whatever the
network state is.

SR based video compression is an “all in the model” compression scheme. The
SR algorithm first builds a dictionary of pairs of LR and HR patches from the two KF
which surround the GOP of LR frames. Then, LR patches are decomposed onto the LR
dictionary (column b, steps 1 and 2 in Fig. 2.9), and the SR algorithm uses both this LR
decomposition and the dictionary to enhance the resolution (column b, step 3 in Fig. 2.9).

More precisely, for each patch of the current LR frame, a nearest neighbor search
is performed (column b, step 1 in Fig. 2.9) in the LR dictionary built from the KF.
Note that the patches in the dictionary have different characteristics. Indeed, they can
represent either a smooth area, an edge or a texture. Each type of patch has a different
complexity since the number of DCT coefficients to sufficiently well approximate a patch
varies and depends on the type of the patch, see Fig. 2.10. In a way, the type of the
patch (smooth/edge/texture) is similar to a class of distributions, and the NN search is
similar to selecting a distribution within the class distribution. The second step consists
in computing weights to better approximate a LR patch, which can be seen as specifying
the distribution within the class. (Note that another originality of the proposed method
in [13] is to not only consider the current frame but also corresponding patches in the KF
(column c. in Fig. 2.9). This insures some temporal consistency.) Finally, the weights
are used with the HR dictionary to generate the HR patch. So here, the KFs act as the
description of the model class, and the LR image as the identification of one distribution
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Figure 2.9: Principle of the SR algorithm.

within the class. KF and LR are the only transmitted data. Indeed, no residue is sent
between the true and super-resolved image. Therefore, this scheme is an all in the model
compression scheme.

texture
basis function

smooth

edge

Figure 2.10: Patches in an image have different types (smooth area, edge, and texture) and
therefore have different complexities measured as the number of DCT coefficients required
to efficiently approximate a patch.

The second remarkable fact about this compression approach is that the code of the
model is the one used for the data. Indeed, the distribution is sent as an empirical
distribution i.e. samples. Accordingly, the encoding of this empirical distribution is done
using a video compression scheme (HEVC in this setup).

Interestingly, this proposed compression algorithm based on SR achieves similar com-
pression efficiency as HEVC while sending possibly two spatial resolutions [13]. This
is noticeable since scalable video encoders suffer some penalty [107] (12.8% for the all
intra configuration and 13.7% for the RandomAccess configuration [93]). The penalty of
scalable video encoders is sometimes explained by the redundant sampling of predictive
video coders: indeed to encode a high resolution frame, the number of residue samples
equals the resolution of the enhanced but also base layer. This is the reason why wavelet
based scalable video compression schemes were proposed since they are non-redundant
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[15, 60, 94]. These coding schemes indeed only experienced little penalty with respect to
the non scalable H.264 AVC scheme [80], but had the drawback to not be compatible with
H264 AVC. Interestingly, the SR based compression scheme is compatible with the stan-
dardized H.26x coding schemes, and shows similar compression results to the ones of H.265
HEVC the latest of the standardized coding schemes. So, it shows that we need to go to
a significant subsampling of the residue to cancel the scalability penalty of standardized
video coding schemes.

In conclusion, the proposed video compression scheme, based on SR, allowed us
to analyze an all-in-the-model compression scheme. The all-in-the-model compression
scheme allows to draw several conclusions. First, coding the model is considered to be
a difficult problem. The SR based video compression scheme shows that this can be
circumvented by coding the model as data. Second, it is widely believed that scalable
video compression schemes are suboptimal [93], especially when they are based on the
standardized hybrid coding schemes (H.26x). This SR based algorithm shows that, on
the contrary, a video can be scalably encoded without any additional penalty.

Other contributions: Super-resolution efficient both in terms of distortion and
complexity. We proposed novel techniques capable of producing a high-resolution
(HR) image from a single low-resolution (LR) image. A first algorithm with complexity
constraint (external dictionary) was proposed that improves the PSNR by at least 1 dB
with respect to state of the arts methods. The innovations were efficient image patch
representation [8], patch estimation [9] and dictionary learning [10, 12]. Then, relaxing
the complexity constraint, we proposed a method based on an internal dictionary, that
improved state-of-the art methods by about 0.8dB [14].

2.8 Distributed source coding:
model selection and impact of mismatch model

Publications related to this topic:

[101] V. Toto-Zarasoa, A. Roumy, and C. Guillemot, “Maximum Likelihood BSC parameter esti-
mation for the Slepian-Wolf problem,” IEEE Communications Letters, vol. 15, no. 2, pp.
232–234, Feb. 2011.

[40] E. Dupraz, A. Roumy, and M. Kieffer, “Source Coding with Side Information at the Decoder
and Uncertain Knowledge of the Correlation,” IEEE Transactions on Communications, vol.
62, no. 1, pp. 269 – 279, Jan. 2014.

Major publication:

[102] V. Toto-Zarasoa, A. Roumy, and C. Guillemot, “Source modeling for Distributed
Video Coding,” IEEE Trans. on Circuits and Systems for Video Technology, vol.
22, no. 2, Feb. 2012.

Also [75, 96, 100, 95, 48, 99, 97, 98, 35, 37, 36, 40, 39, 38].

Distributed source coding (DSC) refers to the compression of many correlated sources
without communication between the sources. An instance of this problem is source coding
with side information (SI) at the decoder. Here, two correlated source sequences xn and
yn are given and the source sequence xn needs to be compressed. Upon compression, the
side information yn is not known. By contrast, the decoder knows yn and receives the
compressed version of xn (SW coding scheme in Fig. 2.11).
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Figure 2.11: Source coding with SI at the encoder and the decoder (predictive coding).
Source coding with SI at the decoder only (Slepian Wolf (SW) coding).

Surprisingly, Slepian and Wolf (SW) [90] showed that the schemes with (predictive,
Fig. 2.11) and without (SW, Fig. 2.11) SI at the encoder, achieve the same compression
rate. However, the two encoding schemes are completely different, as the predictive encoder
can use explicitly the realization of the other source yn, whereas the SW encoder relies
only on the joint distribution between Xn and Y n, referred to as the model. Therefore,
SW coding is also called model-based coding. More precisely, the model is used at both
encoder and decoder but in a different way:

- to determine the code and the compression rate, at the encoder,
- to estimate xn from yn, at the decoder.

Knowing the model is a key assumption, for not needing the SI at the encoder in the
SW scheme. Indeed, without this knowledge, the compression rate increases from H(X|Y )
to H(X) (for memoryless sources), i.e. as for a scheme without SI. However, in practical
systems, the model may not be known. Therefore, when the encoding function is linear
[92], we first showed that this model can be efficiently inferred at the decoder. The trick
consists in deriving the maximum likelihood estimate of the model parameters knowing
degraded versions of the information available at the decoder (i.e. the compressed version
of the SI yn and not the SI itself), and refining it with an Expectation Maximization
(EM) algorithm. Indeed, the originality of the methods relies in the initialization. Indeed,
a direct implementation of the model parameter estimation problem with respect to all
information available at the decoder relies on a hidden variable, the source sequence. And
this problem can either be solved jointly (sequence and parameter) with a prohibitive
compelxity or with an EM algorithm, but where the initialization is tricky. Instead, the
model parameter estimation with respect to the compressed version of the SI, and not the
SI itself, can be solved according to a ML criterion. This approach holds quite generally for
binary memoryless sources with an additive channel [101], non-binary sources [40], sources
with memory and back or reverse correlation channel [102]. Moreover, we characterized
the effect of an imperfect knowledge of the model at the encoder on the compression rate
and proposed practical schemes to achieve these rates [38]. Indeed, the lack of model
knowledge can significantly degrade the performance since the optimal compression rate
is reduced to a worst case [40]. The degradation was evaluated for different source models
Both results (possibility to learn the model the decoder, and significant degradation at the
encoder without model) motivates the use of a feedback channel to tune the compression
rate in practical systems.

As an application, we considered Distributed Video Coding (DVC), a video compression
system that builds upon the idea of distributed source coding in order to achieve efficient
video compression while maintaining a low complexity at the encoder. Despite recent
advances, distributed video compression rate-distortion performance is not yet at the level
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of predictive coding. The key issues we considered to bring DVC to a level of maturity
closer to predictive coding were:

1. finding a new model well suited for the sources in DVC. The new model includes
(i) two classes: new (inter) correlation model (i.e. between the sources),
(ii) the non uniformity of each source [99],
(iii) the memory of each source (Hidden Markov models are used) [97].

2. finding the information theoretical compression rates for these models
3. estimating the model parameters [101] and the model class (correlation type).

Note that the novelty in the approach results from the integration of memory and non-
uniformity in the entropy coder. Indeed, integration of these properties are straightforward
in source codes such as arithmetic code [26, Sec. 13.3]. However, due to the duality
between channel coding and DSC [90, 21], the entropy coder is here a channel code, which
requires special handling. The Distributed Video Coding system [102] that integrates the
enhancement that we propose here demonstrates a quality-versus-rate improvement by up
to 10.14%, with respect to its elder version. A simplified model with non-uniform sources
is also proposed that achieves an improvement by up to 5.7%.

In DSC, the lack of model knowledge at the encoder can significantly degrade the
compression performance. However, even achieving these degraded performances is
challenging, since the decoder also needs the model knowledge. It was shown that the
lack of model knowledge at the decoder can be circumvented. The trick consists in
estimating the source parameters optimally according to the ML criterion but with
respect to a subset of the information available at the decoder. This estimate allows to
efficiently initialize an EM algorithm, known to be very sensitive to the initialization.
As for the application to DVC, we proposed new models and their model estimation
methods, that achieved up to 10.14% bitrate saving with respect to state-of-the-arts
DVC implementations. The novelty here resided in the integration of non-uniformity
and memory in the entropy coder for DSC, which turns out to be a channel code.

2.9 Uncertainty on the side information available at the de-
coder: Free-viewpoint Television (FTV)

Publications related to this topic:

[74] A. Roumy, “An Information theoretical problem in interactive Multi-View Video services,”
IEEE Communications Society Multimedia Communications Technical Committee (ComSoc
MMTC) E-Letter, vol. 11, pp. 11–16, March 2016.

[33] E. Dupraz, T. Maugey, A. Roumy, and M. Kieffer, “Transmission and Storage Rates for
Sequential Massive Random Access,” arXiv:1612.07163, 2017.

Major publication:

[76] A. Roumy and T. Maugey, “Universal lossless coding with random user access:
the cost of interactivity,” in Proceedings IEEE International Conference on Im-
age Processing, Sep. 2015.

The lack of model knowledge at the encoder can significantly degrade the compression
performance (see Sec.2.8). For instance, when many SIs are available at the encoder, and
only one SI out of the set is available at the decoder, without the encoder knowing which
one from the set (see Fig. 2.12), then the optimal compression is given by the worst case
i.e. with respect to the least correlated SI [28].
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Figure 2.12: Source coding with SI at the decoder and set of SIs at the encoder (Compound
code CC).

This setup occurs for instance in Free-viewpoint television (FTV). Indeed, one user
chooses a viewpoint, i.e. an image, and can change it at anytime. Compression is per-
formed offline, the compressed video is stored at a server, and the users make requests to
the server. When an image is compressed, the encoder knows that the decoder can have
in memory a previously requested image, but does not know which one, since this depends
on the navigation of the user. In this case, the optimal compression is determined by the
least correlated image that could be in the users memory.

To lower the compression rate, the server could decode the whole video, and reencode
the requested images. However, this would lead to an extreme complexity at the server.
It is however possible to achieve the same compression rate, while maintaining a low
complexity at the server [76]. The idea consists in allowing the server to extract bits from
the compressed bitstream see Fig. 4.1.

decoder
o ine

encoder

online

extractor

Figure 2.13: Source coding with bitextraction at the server.

Uncertainty on which SI is available at the decoder occurs in the context of FTV,
where users can freely choose and change their viewpoint at anytime. This uncertainty
can significantly degrade the compression performance. However, we have shown that
this can be circumvented if the server is allowed to extract samples from the bitstream,
corresponding to the compressed bitstream.
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Chapter 3

Transmission and universality

Universal transmission, or universal channel coding, is the problem of sending data over
a noisy channel without knowledge of the channel transition probability. If universality
does not incur any loss in data compression (at least asymptotically), this is not the case
for the transmission over noisy channels. Indeed the lack of knowledge has two possible
impacts. More precisely, for the case of a memoryless channel with a single path:

– the transmitter can not predict the rate to encode the data, because the channel
statistics are not known. Therefore, the best performance is determined by the
worst channel [46, Th. 3.2.1]. To compensate for this negative result, a feedback
channel, if possible, is used to inform the encoder of the channel statistics. If not,
then an outage will occur, i.e. cases where no transmission is possible. This problem
has been studied in [61].

– the lack of knowledge has also an impact on the decoder. Indeed, if the decoder uses
a wrong decoding metric, then the performance might be degraded. Unfortunately,
the optimal performance under mismatched decoding [56] is still an open problem.
However, there exists cases where the decoding metric has no impact on the per-
formance. This occurs for an erasure channel. This also occurs if sequencewise ML
decoding is performed, and if the channel is either a binary symmetric channel (BSC)
or a finite alphabet input Additive White Gaussian Noise Channel (AWGN). Indeed,
in both cases, the ML decoding is equivalent to minimizing a distance (Hamming for
BSC and Euclidean for AWGN).

So the impact of the lack of channel knowledge is well studied when the channel has a single
path. However, many questions remain regarding the case of multipath channels. There-
fore, we studied the question of imperfect channel knowledge in the context of multipath
channels (Sec. 3.1).

Moreover, the solution of a feedback channel to circumvent the lack of knowledge at
the transmitter may not always be usable, for instance if there is a delay constraint. For
these cases, the source has to be adapted to the channel. This is studied in Sec. 3.2.

33
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3.1 Transmission without perfect channel knowledge:
Equalization and channel parameter estimation

Publications related to this topic:

[83] N. Sellami, A. Roumy, and I. Fijalkow. A proof of convergence of the MAP turbo-detector
to the AWGN case. IEEE Trans. on Signal Processing, 56(4):2716 – 2724, April 2008.

[50] I. H. Kacem, N. Sellami, A. Roumy, and I. Fijalkow, Training sequence length optimiza-
tion for a turbo-detector using decision-directed channel estimation,” Research Letters in
Communications, 2008.

[85] N. Sellami, M. Siala, A. Roumy, and I. Kammoun, MAP sequence equalization for imperfect
frequency selective channel knowledge,” European Transactions on Telecommunications, vol.
21, no. 2, pp. 121–130, 2010.

Major Publication:

[82] N. Sellami, A. Roumy, and I. Fijalkow, The impact of both a priori information
and channel estimation errors on the MAP equalizer performance,” IEEE Trans.
on Signal Processing, pp. 2716–2724, July 2006.

Also [19, 20, 84, 81]

Multipath channels occur in wireless scenarios where the omnidirectional waveform
sent is reflected (against building for instance) and the receiver gets multiple and delayed
copies of the emitted signal. This occurs much more in urban areas. After sampling,
the receivers gets a discrete convolution of the input signals and needs to deconvolve
the input. This deconvolution, usually referred to as equalizer, can be performed either
optimally in the sense of the maximum a posteriori (MAP) criterion with a complexity
that grows exponentially with the number of multipath or with a linear filter with or
without feedback loop. In the latter case, the complexity grows only linearly with the
number of multipaths [63]. More formally, let X stand for the random vector that models
the input of the channel, H be the vector of the channel coefficients (i.e. the coefficients
of the filter), Y be the output of the channel, and x,y,h their realizations. Let us further
assume that the channel is fixed during the transmission of the block X. The classical
MAP equalizer solves

x̂ = arg max
x̃

P(X = x̃|Y = y,H = h) (3.1)

These equalizers all assume that the coefficients of the channel are perfectly known. If
this is not the case, then a learning sequence known by both the encoder and the decoder
is sent, which allows the receiver to first estimate the coefficients of the channel. Then,
the algorithm becomes

x̂ = arg max
x̃

P(X = x̃|Y = y,H = ĥ) (3.2)

where ĥ is the estimate of the channel.

For infinite length learning sequence, the channel can be perfectly estimated. However,
for the sake of efficiency, the whole bandwidth can not be used for learning the channel,
(the primary goal is to send data). So, the learning sequence is finite and the estimation
is thus not perfect (due to the additive thermal noise).

Another solution is to consider the problem on the whole

x̂ = arg max
x̃

P(X = x̃|Y = y) (3.3)
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to introduce the hidden variable h and to iterate between the computation of the symbol
densities and the estimation of the channel coefficients.

x̂i+1 = arg max
x̃

P(X = x̃|Y = y,H = ĥi) (3.4)

ĥi+1 = EP(X=x̂i+1|Y=y,H=ĥi)
[LMS(x̂i+1)] (3.5)

This problem can be solved with an iterative solution such as the expectation maximiza-
tion. The algorithm introduces the hidden variable h and iterates between the computation
of the symbol densities and the estimation of the channel coefficients. This algorithm is
however very sensitive to the initialization as, the problem (3.3) is not convex. There-
fore the need for a first good estimate of the channel. But if an initialization is provided,
through for instance a learning sequence, then the statistical characteristics of this channel
estimate should be taken into account. This leads to the following optimization problem:

x̂ = arg max
x̃

P(X = x̃|Y = y, Ĥ = ĥ) (3.6)

We proposed an iterative solution to this problem in [85].
A second contribution is the analysis [82] of a MAP equalizer, which receives an esti-

mate of the channel coefficients. The difficulty in this analysis relies on the fact that the
receiver does not perform linear transformations, but rather performs an exhaustive search
among all possible input sequences. This search can be made in an efficient way, such that
the computation grows linearly with the length of the sequence (the exponentially growing
cost is in the length of the channel only). Still to perform an analysis, all possible errors
need to be considered. Our analysis follow the same line and a closed form expression of
the probability of error at the equalizer output as a function of the accuracy of the channel
estimate is derived. The analysis was then extended to the case of a turbo-detector (iter-
ative receiver MAP equalizer and MAP channel decoder) [81] and to the case of MIMO
receivers [19].

This analysis was the starting point to design the system and perform resource al-
location. In particular, we optimized the training sequence length and showed that the
shortest is the better. Indeed, using more symbols to learn the channel will lower the error
rate of the equalizer but also lower the data throughput. [50] shows that on the whole
the shortest the training sequence the better. This analysis was performed under realis-
tic assumption of an efficient receiver. First, a turbo detector (concatenation of a MAP
equalizer and convolutional decoder, shown to get rid of the channel) was used. Second,
the channel estimate is also improved as the symbols are estimated (Least mean square
estimate).
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2L− 1, where L is the channel memory. Notice that a similar
result was found in [5] by maximizing a lower bound on the
training-based channel capacity when the training and data
powers are allowed to vary.

Throughout this letter, scalars and matrices are lower and
upper case, respectively, and vectors are underlined lower
case. The operator (·)T denotes the transposition.

2. Transmission System Model

As shown in Figure 1, the input information bit sequence is
encoded with a convolutional code, interleaved and mapped
to the symbol alphabet A. In this letter, we consider the
BPSK modulation (A = {−1, 1}). The symbols are then
transmitted over a multipath channel. We assume that
transmissions are organized into bursts of T symbols. The
channel is assumed to be invariant during the transmission.
The received baseband signal sampled at the symbol rate at
time k is

yk =
L−1∑

l=0

hlxk−l + nk, (1)

where L is the channel memory and xk are the transmitted
symbols. In this expression, nk are modeled as independent
and identically distributed (iid) samples from a random
variable with normal probability density function (pdf)
N (0, σ2), where N (α, σ2) denotes a Gaussian distribution
with mean α and variance σ2. The term hl is the lth tap gain
of the channel.

The initial channel estimate is provided to the receiver by
a least square estimator using Tp training symbols with 2L−
1 ≤ Tp ≤ T [1], where Tp is the parameter to be optimized.

3. Decision-Directed Channel Estimation

As shown in Figure 2, we consider a turbo-detector com-
posed of a MAP equalizer and a MAP decoder. At each
iteration, the equalizer and the decoder compute a posteriori
probabilities (APPs) and extrinsic probabilities on the coded
bits [7]. They exchange the extrinsic probabilities which will
be used as a priori probabilities, to improve iteratively their
performance. In order to refine the channel estimate, the
channel estimator uses the hard decisions on the transmitted
coded symbols based on the APPs at the output of the
decoder. Indeed, the channel estimator is fed with Tp pilot
symbols and δT estimates of the coded symbols coming from
the decoder. Let x = (xTp+δT−1, . . . , x0)T be the sequence

containing the Tp training symbols (xTp−1, . . . , x0)T and the

δT data symbols (xTp+δT−1, . . . , xTp)
T . The output of the

channel corresponding to the vector x is given by

y = Xh + n, (2)

where h = (h0, . . . ,hL−1)T is the vector of channel taps, X
is the (Tp − L + 1 + δT) × L Hankel matrix having the first

column (xTp+δT−1, . . . , xL−1)T and the last row (xL−1, . . . , x0);
and n is the corresponding noise vector.
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In order to estimate the channel, the observation vector
y is approximated as follows:

y ≈ X̂h + n, (3)

where X̂ is the estimated version of the matrix X containing
the hard decisions on the coded symbols at the output of the
decoder. The iteration process can be repeated several times
and here the matrix X̂ corresponds to the estimated symbols
at the last iteration.

The least square estimate ĥ = (ĥ0, . . . , ĥL−1)
T

of h is given
by [1]

ĥ = (X̂TX̂)
−1
X̂T y. (4)

In general, δT is chosen to give a good complex-
ity/performance trade-off. We suppose in the following that
δT is fixed such that δT � L. We also assume that the vector
of errors on the coded symbols at the output of the decoder
is independent of the noise vector. In average, the errors
are assumed to be uniformly distributed over the burst. The
channel estimation mean square error (MSE) is given by [3]

E(‖δh‖2) = σ2L

Tp − L + 1 + δT
+ 4

E(n2) + (L− 1)E(n)

(Tp − L + 1 + δT)2 ,

(5)

where E(·) is the mathematical expectation, n is the number
of erroneous hard decisions on the coded symbols at the
output of the decoder, used by the channel estimator.

Let β = E(n/δT) and β2 = E(n2/δT2). Hence, (5) can be
rewritten as

E(‖δh‖2) = σ2L

Tp − L + 1 + δT
+ 4

β2δT2 + (L− 1)βδT

(Tp − L + 1 + δT)2 .

(6)

4. Performance Analysis of the MAP Equalizer

We want now to study the impact of the a priori information
and the channel estimation errors on the MAP equalizer
performance.
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Figure 3.1: Transmitter and Turbo receiver.

Finally, the tools developed to analyze the negative effect of parameter uncertainties
can also quantify the positive effect of some side information (for instance a priori infor-
mation in a turbo scheme). We could then analyze the convergence of a turbo detector
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and show that the effect of a multipath channel can be removed [83]. This is a well know
result when there is no noise. And it is interesting to see that the result still holds in the
presence of noise, provided a channel code is used, and that a turbo scheme is used at the
receiver.

Uncertainty of the channel was studied under the assumption that only the channel
coefficients are unknown but the noise level is known at both encoder and decoder.
This setup was motivated by the fact that there exist indeed ways to avoid the impact
of an uncertainty on the noise level. It was shown that the fact that a channel has
multipath is not harmful. In fact, when the coefficients of the mutipath channel are not
known, the effect on the channel can completely be compensated even in the presence
of noise. Moreover, when the channel coefficients need to be estimated, then it was
shown that the length of the training sequence can be as short as possible.

3.2 Unified method for transmission with
adaptation to the channel: Unequal Erasure Protection,
adaptation to the source: File Bundle Protection

Publications related to this topic:
[67] V. Roca, A. Roumy, B. Sayadi, “The Generalized Object Encoding (GOE) Approach for

the Forward Erasure Correction (FEC) Protection of Objects and its Application to Reed-
Solomon Codes over GF(28)”, IETF RMT Working Group, July 2012.

[68] V. Roca, A. Roumy, B. Sayadi, “The Generalized Object Encoding (GOE) LDPC-Staircase
FEC Scheme”, IETF RMT Working Group, Oct 2012

[69] V. Roca, A. Roumy, B. Sayadi, “The Need for Extended Forward Erasure Correction (FEC)
Schemes: Problem Position”, IETF RMT Working Group, July 2012.

[78] A. Roumy, V. Roca and B. Sayadi. “Memory Consumption Analysis for the GOE and PET
Unequal Erasure Protection Schemes”, ICC 2012.

Major Publication:
[79] A. Roumy, V. Roca, B. Sayadi, R. Imad,, “Unequal Erasure Protection and

Object Bundle Protection with the Generalized Object Encoding Approach”,
INRIA Research Report RR-7699, July 2011.

Networks experience packet losses at the Internet Protocol (IP) level. Indeed,
the physical layer introduces impairments in the form of symbol errors. Then, check sum
are applied at the data link and/or physical layer that rejects the damaged frames. If the
physical layer is wireless, the packet loss ratio (called Block Error Rate in [2]) can be rather
high. For instance, 3GPP [2, Annex E] adopted different end-to-end profiles leading to a
packet loss rate between 0.2375 % (for wideband calls) and 2.6375 % (for super-wideband
calls) [54].

Retransmission and Forward Error Codes (FEC) can cope with erasures but
introduce delays. Several solutions exist in the transport layer and above, to ensure
that the client can recover the data in the presence of packet losses; for instance, retrans-
mission (in unicast with the TCP protocol [62]; in multicast, with the Reliable Mutlicast
Transport Protocol [59], where lost packets are also recovered with local retransmission
thanks to a designated receiver to avoid acknowledgment implosion) or protection with
Forward Error Codes (FEC) [53, 106]. Both strategies implies delays which may not always
be compatible with real time streaming:
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– delay for retransmission is at least the Round Trip Time (RTT);
– delay with FEC is the time needed to send all the encoded packets, which can be up

to the number of encoded packets defined by the smallest code rate: Rmin = k
nmax

,
if there is no feedback to stop transmission, when a sufficient number of packets is
received.

Unequal erasure protection helps meeting a tighter delay constraint. Indeed,
there is another degree of freedom: the amount of source data. Indeed, if the source
can be split into importance subfiles (for instance scalable video encoding [49], or data of
interframe versus intraframe in a video), it is possible to further decrease the delay with
UEP. UEP can be implemented with retransmission [18] or FEC [16, 105, 3, 79]. Here we
consider solutions based on FEC codes because:

– delays incurred by retransmission are always bigger than delays by FEC (due to
RTT)

– FEC based protocols can easier scale up and deal with a large number of receivers
than retransmission based protocols

More precisely, in UEP, the original k packets of the source are split into a base layer
(k1 packets) and some enhancement layers (k2, ...). Then, each layer is protected with a
different erasure channel code, the base layer being more protected than the other layers:
Rmin = k

nmax
= R1 = k1

n1
≤ R2 = k2

n2
. Therefore, assuming that Rmin = R1 and since by

construction k1 ≤ k, we have n1 = k1
k n ≤ n, introducing a smaller delay for the base layer.

Existing solutions to achieve unequal erasure protection are equivalent in terms
of erasure resilience. They differ in terms of computational complexity and
memory consumption.

– joint encoding of all layers: [16], [105] (with expanding window),
– separate encoding of the layers and joint packetization of the encoded data: as in

Priority Encoding Transmission (PET) [3]
– separate encoding of the layers and separate packetization: as in Generalized Object

Encoding (GOE) [79]

Separate encoding of the layers is asymptotically optimal over an erasure channel [17], so
all methods listed above perform the same in terms of erasure resilience. However, the
methods differ in terms of computational complexity and memory consumption. First,
joint encoding is more complex than separate encoding as the data of all layers have to be
jointly processed. Second, joint packetization [3] is more complex than separate encoding
[79] as all encoded data need to be stored and concatenated, by taking into account the
amount of data in each layer (ki) and its protection level (Ri). Moreover, PET [3] suffer
more from rounding than GOE and requires to recompute the data partition each time
the size of the source data changes.

Interestingly the GOE approach can also handle small source packet sizes.
Transport protocol have fixed packet size. In the case of small source packet sizes, the
packets might be rather empty, as classical protocols consider to put the data of a single
source in each packet. Thanks to a new abstraction level, the GOE signalization can also
handle concatenate small packets, saving badnwidth. This approach can be seen as a
variable to fixed length code.
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Unequal erasure protection (UEP) is a tool to adapt a priori to the channel losses,
while meeting a delay constraint. Since the adaption is done prior to transmission, the
system must be dimensioned to the worst case. But different levels of protection are
provided such that the delay can be lowered. GOE is a framework to implement UEP
with separate encoding and packetization. The novelty lies in the introduction of a
new level of abstraction that allows to deal with different parts of an object to be sent
over the network. This is done through the GOE signalization compatible with any
transport protocol with or without feedback (TCP, ALC) and is therefore backward
compatible. It is as efficient as state of the art methods in terms of erasure efficiency
but less complex in terms of computation and memory. Notably, GOE can also handle
small packets and concatenate them with an appropriate signalization.



Chapter 4

Conclusion and perspectives

This manuscript presented the main research results obtained since completing my PhD.
A general conclusion can now be drawn: the model is central to the design of efficient
compression and transmission schemes. The term “model” is used here in its information
theoretical meaning, see Sec. 2.3. An interesting question concern the accuracy of the
model, i.e. how well the model should capture the data, in the case of compression, or the
channe,l in the case of transmission. Indeed, the most accurate model is not necessarily the
one that leads to the best performance. This is seen for instance in the case of universal
source coding performed with a single distribution, or with a unique transform, whatever
the image to be compressed is, Sec. 2.6. Similarly, in the case of transmission, it was
shown that the optimal description of the channel with a turbo detector, is the shortest
one, Sec. 3.1. Nevertheless, in some cases, a better model can improve. For instance, in
the case of DVC, our results showed that a model that better fits the signal characteristics,
improves significantly the compression performance, see Sec. 2.8.

This leads to the question raised in the title of the manuscript: “is it necessary to send
the model?” And it can now be concluded that there is no unique answer. Indeed, in the
case of compression, it was shown that two extreme compression schemes with or without
sending the model (see Sec. 2.6 and Sec. 2.7) achieve comparable performance. The fact
that there is no unique answer to this question is to be welcomed as it allows to adapt to
the application constraints (complexity, delay, ...). However, it is important to stress that
not sending the model does not mean not modeling. Indeed, in the deep transform, the
model is learned from a database. But, the model has properties which depend on the
choice to send or not the model. More precisely, when the model is not sent, the model
must avoid overfitting to be able to generalize to any king of image. By contrast, when
the model is sent, overfitting is a welcomed property (especially, when the data is not sent
as in Sec. 2.7).

To summarize, there are two main issues concerning the model. The first one is related
to the design of algorithms dedicated to a large variety of processing tasks. For instance,
it includes the estimation of the model, and then the processing of the data according to
this model. In the case of compression, these tasks are the construction of the entropy
coder, the transform, the predictor, and the distribution estimator. For the transmission,
it means estimating the channel and decoding the data according to the estimated channel.
The second issue is to evaluate the impact of the model. In the case of compression, this
means to develop a code for the data according to the model, and measure the codelength
of this code. Measuring the impact of the model in the case of transmission requires to
decode the data according to the channel, and to evaluate the performance of the decoder.
These tasks require skills in coding/information theory, but also signal processing, and

39
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vision, areas in which I contributed.

Perspectives. My research program addresses the challenges faced by the emergence
of new types of data, new imaging modalities, and also new practices in terms of user
interaction [7]. This creates the need for efficient and possibly new algorithms and their
analysis, which I will tackle, building on the achieved results, and on the acquired skills.

Compression and diffusion for interactive user experience: Massive Random Access to
large databases. Video traffic represents 80% of the data exchanged over the Internet in
20181. Moreover, the amount of these videos exchanged, might triple from 2016 to 20211.
Internet of Things (IoT) brings even more data exchange increase, since these data are not
only created and requested by human beings but also by objects and machines. Indeed, it
is anticipated that, in 2018, the total generated data will be 400 ZB (1 ZB=1021 B)2.

One characteristic of these data is their high redundancy. For the case of videos, multi-
view acquisition is now widely used, with a tremendous number of possible views: at least
100 views are considered for FTV [1], which leads to a raw datarate of about 124 Gbit/s
(for HD videos at 50Hz). Note that the number of 100 is chosen for testbed experiments
but practical implementation will consider significantly more views. Moreover, the resolu-
tion of visual sensors keeps increasing, and new modalities have emerged (plenoptic, 360o

cameras) [7], leading to high correlation within the pixels but also among the views. Re-
garding IoT for SmartCities, it is usually deployed with overinstrumentation, which leads
to highly spatially and temporally correlated data. It is therefore of great importance to
exploit these redundancies to reduce the traffic and the storage.

My research project aims at compressing these large databases. The high redundancy
of the data suggests to compress the data together, which leads to a single and non-
cuttable compressed bistream. On the other hand, the database is so big that users may
not be interested in the whole database. This occurs exactly in the context of FTV. Users
visualize one view at a time. This also applies for databases collecting data from a large-
scale sensor network (such as Smart Cities). In fact these two problems are instances of a
more general problem that can be called massive random access (MRA) to large databases.
Indeed, MRA concerns databases that are so large that, to be stored on a single server, the
data have to be compressed efficiently, meaning that the redundancy/correlation between
the data have to be exploited. The dataset is then stored on a server and made available
to users that may want to access only a subset of the data. Such a request for a subset
of the data is indeed random, since the choice of the subset is user-dependent. Finally,
massive requests are made, meaning that, upon request, the server can only perform low
complexity operations (such as bit extraction but no decompression/compression).

Compression rates have been derived under simple model assumptions [77], see Sec. 2.9.
It has been shown that the data can be sent at the same compression rate as if there were
no random access to the database. The cost of the interactivity is in the storage only: the
data has to be stored according to the least correlated SI. This cost is rather limited, as
it stays in the same order of magnitude as the compression rate without interactivity. In
particular, it does not scale with the number of possible SIs i.e. the number of navigation
paths allowed. However, to construct practical systems, many issues remain open. I

1Cisco Visual Networking Index: Forecast and Methodology, 20162021 https://www.

cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/

complete-white-paper-c11-481360.html
2Cisco Global Cloud Index: Forecast and Methodology, 20162021 White Paper, Fig. 24 https:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/

white-paper-c11-738085.html#_Toc503317525

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html#_Toc503317525
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html#_Toc503317525
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html#_Toc503317525
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Figure 4.1: MRA (massive random access). A database, containing highly correlated data,
is compressed into a single file in order to exploit the redundancy. Users can access any
subpart of the database. The requested subpart is delivered without transmitting the
whole database, and also without encoding/decoding the data at the server.

am currently leading a project called InterCom, for Interactive Communication3 on this
research topic. The first goal is to derive optimal compression rates in terms of storage
rate but also transmission rate in more realistic scenarios (see Fig. 4.1). The second goal
is to construct practical schemes for both applications: FTV and IoT.

Open problems are:

– Building an entropy coder for MRA. The entropy coder is the core of the compression
algorithm. The proof in [77] relies on the construction of embedded codes, and this
suggests the use, in practice, of variable rate channel codes. Here, and by contrast
with existing codes, the characteristics of the data, i.e. the correlation between the
sources, have to be taken into account.

– Zero error vs vanishing error rate. The proof relies [77] on a vanishing error argu-
ment. However, in practice, the scheme must provide zero error for any length. This
is of great importance for lossless applications (building health monitoring, for in-
stance). This is also needed to avoid error propagation in the context of lossy video
compression implemented with a divide and conquer approach (Sec. 2.4).

– Universal coding. We have shown that, at infinite length, the lack of model knowl-
edge does not impact the compression rates [34]. However, to answer the question
of universal MRA coding, and select the optimal model class, there is a need to
characterize the impact of a wrong model on the compression performance at finite
length.

– Real data have to be preprocessed before being entropy coded. Indeed, in a practi-
cal system, the entropy coder can only tackle limited and remaining dependencies.
Therefore a need for preprocessing to handle most of the redundancy. Moreover, this
preprocessing tasks will depend on the type of data (image, video vs meteorological
data4), and on their representation (point cloud, meshes, pixel values).

3https://intercom.cominlabs.u-bretagneloire.fr/
4Note that the compression of meteorological data is far from anecdotal. In 2017, the weather channel

websites received every minute a deluge of 18 million forecast requests - an increase of 22 % from the
previous year, https://www.domo.com/blog/data-never-sleeps-5/.

https://intercom.cominlabs.u-bretagneloire.fr/
https://www.domo.com/blog/data-never-sleeps-5/
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Image Video compression based on learned models. Despite significant improvements
obtained with the video compression standard HEVC, there is still a need to further com-
press the data. One of the goals is to have a single decoding algorithm that could handle
any new modalities such as High Dynamic Range, 360o videos. Indeed, a project, called
Versatile Video Coding5 (VVC), has been launched in April 2018 to develop a new video
coding standard. The very good performance obtained with the learning of the transform
suggests that it may be fruitful to introduce learning in other processing tasks, such as
the prediction, the entropy coder, or the bit allocation problem.

Acquisition adapted to the sensed signal and optimization according to information
theoretical criteria. Compressed sensing (CS) is an efficient acquisition scheme, where the
acquisition is made through random linear measurements of the data while performing
dimensionality reduction. The reconstruction is performed by solving underdetermined
linear systems under a sparsity a priori constraint, i.e. the data can be transformed in
a domain such that only very few coefficients are non zero. CS is of particular interest
when the classical acquisition scheme already multiplexes the signal, and when the signal
is sparse in some basis. In that case, it is possible to subsample the acquired measurements
and still reconstruct the signal. This is exactly the case in Magnetic resonance imaging
(MRI). Another possible application is when the sampling is performed in raster mode,
and that there is a physical way to perform multiplexing. This is the case with the single
pixel camera.

CS stems from the signal processing community and first analyses mostly concern the
ability to recover the data. More precisely, these analyses are worst case as they consider
a deterministic signal and look for properties on the measurement matrix that guarantee
necessary and/or sufficient conditions for perfect reconstruction of any possible sparse
vector [41]. Another question of interest is the study of CS as a communication tool.
To do this, average analysis over the signal is required, where conditions are computed
such that perfect recovery occurs with high probability. We already obtained preliminary
results regarding the analysis of CS as a communication tool [23, 25] and distributed CS
[24] under the hypothesis that the support is perfectly known. (For distributed CS, we
also proposed practical schemes [22].) A remaining question is under which conditions can
the support of the sparse signal be recovered with high probability. Such average analyses
have been performed for reconstruction algorithms, where the reconstructed signal at
convergence can be characterized. For instance, Basis Pursuit [103], Matched Filter and
linear MMSE [64], thresholded linear MMSE [104], Maximum Likelihood and Approximate
message passing in [64], Symbol-by-Symbol MAP and thresholded Lasso in [104]. When
the reconstruction is based on a greedy algorithm (matching pursuits, etc...), the analysis
is very tricky due to the iterative nature of the algorithm, which introduces dependence
among iterations. An interesting question is therefore under which conditions (size of the
measurement matrix, distribution of the coefficients) can the support of the sparse signal
be recovered by a greedy and iterative algorithm such as orthogonal matching pursuit.

5https://news.itu.int/versatile-video-coding-project-starts-strongly/
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